Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mol Genet Metab ; 136(4): 289-295, 2022 08.
Article in English | MEDLINE | ID: covidwho-1984258

ABSTRACT

RNA-based therapies are a new, rapidly growing class of drugs that until a few years ago were being used mainly in research in rare diseases. However, the clinical efficacy of recently approved oligonucleotide drugs and the massive success of COVID-19 RNA vaccines has boosted the interest in this type of molecules of both scientists and industry, as wells as of the lay public. RNA drugs are easy to design and cost effective, with greatly improved pharmacokinetic properties thanks to progress in oligonucleotide chemistry over the years. Depending on the type of strategy employed, RNA therapies offer the versatility to replace, supplement, correct, suppress, or eliminate the expression of a targeted gene. Currently, there are more than a dozen RNA-based drugs approved for clinical use, including some for specific inborn errors of metabolism (IEM), and many other in different stages of development. New initiatives in n-of-1 RNA drug development offer new hope for patients with rare diseases and/or ultra-rare mutations. RNA-based therapeutics include antisense oligonucleotides, aptamers, small interfering RNAs, small activating RNAs, microRNAs, lncRNAs and messenger RNAs. Further research and collaborations in the fields of chemistry, biology and medicine will help to overcome major challenges in their delivery to target tissues. Herein, we review the mechanism of action of the different therapeutic approaches using RNA drugs, focusing on those approved or in clinical trials to treat IEM.


Subject(s)
COVID-19 , Metabolism, Inborn Errors , Humans , Metabolism, Inborn Errors/drug therapy , Metabolism, Inborn Errors/therapy , Oligonucleotides/therapeutic use , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Rare Diseases/drug therapy , Rare Diseases/genetics
2.
Orphanet J Rare Dis ; 17(1): 166, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1789126

ABSTRACT

BACKGROUND: Several common conditions have been widely recognised as risk factors for COVID-19 related death, but risks borne by people with rare diseases are largely unknown. Therefore, we aim to estimate the difference of risk for people with rare diseases comparing to the unaffected. METHOD: To estimate the correlation between rare diseases and COVID-19 related death, we performed a retrospective cohort study in Genomics England 100k Genomes participants, who tested positive for Sars-Cov-2 during the first wave (16-03-2020 until 31-July-2020) of COVID-19 pandemic in the UK (n = 283). COVID-19 related mortality rates were calculated in two groups: rare disease patients (n = 158) and unaffected relatives (n = 125). Fisher's exact test and logistic regression was used for univariable and multivariable analysis, respectively. RESULTS: People with rare diseases had increased risk of COVID19-related deaths compared to the unaffected relatives (OR [95% CI] = 3.47 [1.21- 12.2]). Although, the effect was insignificant after adjusting for age and number of comorbidities (OR [95% CI] = 1.94 [0.65-5.80]). Neurology and neurodevelopmental diseases was significantly associated with COVID19-related death in both univariable (OR [95% CI] = 4.07 [1.61-10.38]) and multivariable analysis (OR [95% CI] = 4.22 [1.60-11.08]). CONCLUSIONS: Our results showed that rare disease patients, especially ones affected by neurology and neurodevelopmental disorders, in the Genomics England cohort had increased risk of COVID-19 related death during the first wave of the pandemic in UK. The high risk is likely associated with rare diseases themselves, while we cannot rule out possible mediators due to the small sample size. We would like to raise the awareness that rare disease patients may face increased risk for COVID-19 related death. Proper considerations for rare disease patients should be taken when relevant policies (e.g., returning to workplace) are made.


Subject(s)
COVID-19 , COVID-19/genetics , Cohort Studies , England , Genomics , Humans , Pandemics , Rare Diseases/epidemiology , Rare Diseases/genetics , Retrospective Studies , SARS-CoV-2
3.
Hum Mol Genet ; 31(12): 2078-2089, 2022 06 22.
Article in English | MEDLINE | ID: covidwho-1621609

ABSTRACT

Recent studies have demonstrated a relevant role of the host genetics in the coronavirus disease 2019 (COVID-19) prognosis. Most of the 7000 rare diseases described to date have a genetic component, typically highly penetrant. However, this vast spectrum of genetic variability remains yet unexplored with respect to possible interactions with COVID-19. Here, a mathematical mechanistic model of the COVID-19 molecular disease mechanism has been used to detect potential interactions between rare disease genes and the COVID-19 infection process and downstream consequences. Out of the 2518 disease genes analyzed, causative of 3854 rare diseases, a total of 254 genes have a direct effect on the COVID-19 molecular disease mechanism and 207 have an indirect effect revealed by a significant strong correlation. This remarkable potential of interaction occurs for >300 rare diseases. Mechanistic modeling of COVID-19 disease map has allowed a holistic systematic analysis of the potential interactions between the loss of function in known rare disease genes and the pathological consequences of COVID-19 infection. The results identify links between disease genes and COVID-19 hallmarks and demonstrate the usefulness of the proposed approach for future preventive measures in some rare diseases.


Subject(s)
COVID-19 , Virus Diseases , COVID-19/genetics , Humans , Models, Statistical , Rare Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL